Demand-Side Management Technology Workshop: Advances in Water Heating

Sponsored by
Basin Electric Power Cooperative
with Western Area Power Administration

May 26, 2010 Bismarck, ND

Water Heating Technologies Roadmap

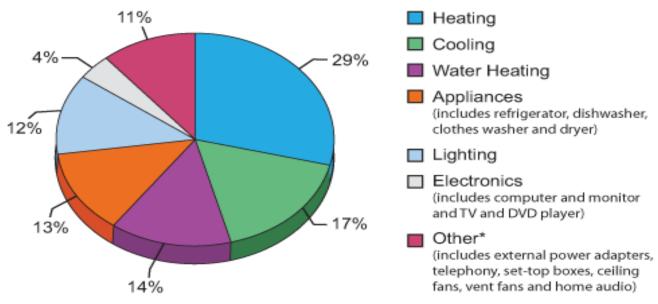
Katherine Johnson, Johnson Consulting Group
with
Steve Koep, Rheem/Marathon
Michael Racculia, GE
Jim Deichert, Steffes Corp
Dave Myers, UMC

Topics Covered

- Market Overview
- Types of Systems
- Solar Thermal vs. Photovoltaic
- International Solar Overview
- Overview of Solar Product Suppliers
- Certifications (SRCC, Etc)
- Water heating as 'renewable energy storage'

Market Overview

- 9 Million Units Annually
- 50% Electric 50% Gas
- 50% Retail 50% Wholesale
- 80% Replacement 20% New Construction
- 65% Emergency 35% "Planned Replacements"
- Average Tank Life 10 Years
- 10% of installed tanks replaced annually

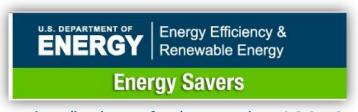


Energy Breakdown- Water Heating

- 15-20% of Residential Energy Use
- The "Forgotten" Appliance

Where Does My Money Go?

Annual Energy Bill for a typical Single Family Home is approximately \$2,200.


Market Drivers

- Industry Consolidation
- Engineered for Replacement
- Improving Efficiency
- Integrated Systems
 - Geothermal Heat Pump (GHP)
 - High-Efficiency Boilers
- Safety: Flammable Vapor Ignition Resistant (FVIR)
- Emergence of Solar and other types of water heater (WH) systems

Types of Water Heater Systems

- Storage
- Tankless
 - Indirect
 - On Demand
- Heat Pump Water Heater
- Solar Water Heaters
- For more information:

www.energysavers.gov/your_home/water_heating/index.cfm/mytopic=12850

Storage Water Heaters

Hot water out

Dip Tube

Anode Rod

Draw-off

Cold water in

Thermostat

Electric Elements

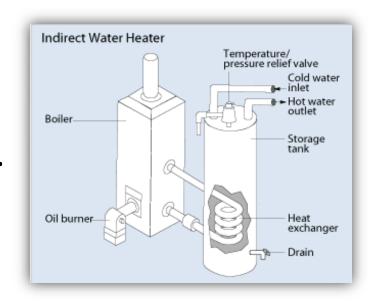
Thermostat

Conventional storage water heaters remain the most popular type of water heating system for the home.

- A single-family storage water heater offers a ready reservoir (20 to 80 gallons) of hot water. It operates by releasing hot water from the top of the tank when the hot water tap is turned on.
- To replace that hot water, cold water enters the bottom of the tank, ensuring that the tank is always full.
- Since tank water temperature is constantly
 maintained, energy can be wasted even when a hot water tap
 isn't running. This is called standby heat loss.

Pros and Cons for Conventional Storage Water Heaters

Pros

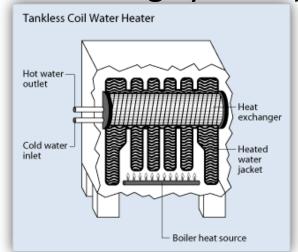

- Proven technology builders and home owners know and trust. The straightforward system has been around for years and works well.
- Low product cost and low installation cost. A basic 30-gallon electric tank can be purchased for less than \$300. Installation is fairly simple.
- Inexpensive replacement cost. If and when a water heater goes bad, the system can easily replaced with a similar unit for about \$500 – \$800.
- Well-insulated models can last a long time. Several manufacturers including Rheem and Vaughn have long-lived water heaters.

Cons

- Conventional tanks are always on. No matter how energy efficient it is, a storage tank cycles on a regular basis to heat and reheat water at a preset temperature, using energy to heat the water whether a homeowner needs it or not.
- Big and bulky. Most tanks take up space in a mechanical or laundry room, especially in smaller homes
- May be inadequate. Depending on the capacity and household hot water needs, a conventional storage tank may not be able to meet demand. Only about 70% of the hot water in a typical storage tank is available for use.
- Less versatile installation. The unit needs a fairly large space for installation and cannot be located outside the home.
- Less durable. Life expectancy of a conventional hot water tank is about 12 to 15 years

Indirect Water Heaters

- Requires a storage tank.
- Uses the main furnace or boiler to heat a fluid circulated through a heat exchanger in the storage tank.
- Energy stored by the water tank allows the furnace to turn off/on less often, which saves energy.

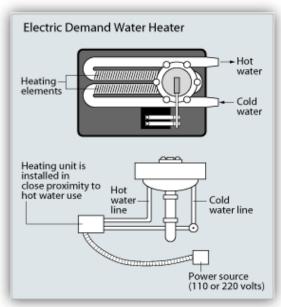


- Can use any type of fuel or energy including electric, gas, propane or solar.
- Integrated or combination water heating systems work with forced air systems, hydronic or radiant floor heating systems.

Indirect Tankless Water Heaters

 Uses a home's space heating system to heat water (integrated or combination water/space heating systems)

Uses a heating coil (tankless coil)
heater or heat exchanger installed
in a main furnace or boiler. When a
hot water faucet is turned on, water
flows through the heat exchanger.



- Provides hot water on demand without a tank, but relies on the furnace or boiler to heat the water directly
- Tankless coil water heaters work most efficiently during cold months when the heating system is used regularly.

Demand (Tankless or Instantaneous) Water Heaters

- Demand water heaters provide hot water only as it is needed.
- When a hot water tap is turned on, cold water travels through a pipe into the unit.
 Either a gas burner or an electric element heats the water. As a result, demand water heaters deliver a constant supply of hot water.

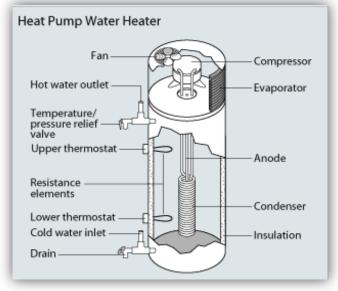
- Typically, demand water heaters provide hot water at a rate of 2 – 5 gallons (7.6 – 15.2 liters) per minute.
- But even the largest model cannot supply enough hot water for simultaneous, multiple uses in large households.

Pros and Cons for Tankless Water Heaters

Pros

- Energy savings
- Unlimited hot water
- Less physical space
- Reduced risk of water damage

Cons


- Start-up delay
- Intermittent use
- Installation cost
- Heat source flexibility
- Recirculation systems
- Maintaining constant shower temperature
- Operation with low supply pressure
- Time-of-use metering and peak electrical loads
- Annual maintenance

Heat Pump Water Heaters

Heat source options:

- Outside air
- Air in the basement
- Air in room where unit is located.

Available with built-in water tanks (integrated systems), or as add-ons to existing electric water heaters

Types of Heat Pump Water Heaters

Add-on Heat Pump Water Heaters:

Installed in conjunction with an existing storage water heater (wall-mounted or on top of existing tank). Converts a conventional water heater into a heat pump water heater by replacing the function of the tank's lower element. Add-on unit is intended to provide most or all of the water heating needs; standard water heater serves as a back-up heater.

Drop-In Heat Pump Water Heaters:

In a "drop-in" or "integrated" heat pump water heater, the heat pump portion is integral to the tank, which has same footprint and connections as a conventional water heater. Installation procedures are essentially the same as a conventional water heater, except for requirement to provide for drainage of condensate.

Desuperheaters:

This is a feature on some central air conditioners and heat pumps. It is a small, auxiliary heat exchanger that uses superheated gases from the central air conditioner's compressor to heat water, providing economical supplemental water heating as a by-product of air conditioning. During the cooling season, the desuperheater actually improves the efficiency of the air conditioning system while heating water at no direct cost.

New Heat Pump Water Heaters GeoSpring hybrid electric heat pump

- Combination of heat pump and standard water heater
- Tank portion includes two electric heating elements, pressure relief valve, an internal porcelain-lined tank, and an anode rod.
- Compressor and evaporator are integrated into the electric water heater unit. Evaporator draws in ambient heat from surrounding air using two variable speed fans. Condenser coils wrap the tank all the way to the bottom to transfer this heat into the tank and heat the water.
- Creates the same amount of hot water as a traditional electric water heater, but can reduce water heating expenses up to 62% to save \$320 per year according to DOE estimates.
- ENERGY STAR® qualified with an energy factor rating (EF) of 2.35.
- Demand response capable with four pre-programmed settings
- Adaptable to multiple communication protocols (Zigbee®, Alliance, FM, etc.)
- Can achieve load shedding and/or load avoidance up to 3950 watts

Source: http://products.geappliances.com/ApplProducts/Dispatcher?REQUEST=SpecPage&Sku=GEH50DNSRSA

Multiple Settings Available

GeoSpring electric heat pump water heater has an electronic back-lit LCD

display and settings can be changed as needed:

- eHeat™ mode Maximizes savings. In this mode, the water heater only operates the heat pump to heat the water. Most efficient mode, and allows for the greatest amount of savings.
- **Hybrid mode** Uses less energy while still experiencing fast recovery times. Uses the heat pump to heat the water, and activates the standard electric elements a needed.
- Water Temp: 120°F
 Hybrid Mode
 Press ^ or v arrows
 to change Water Temp

 FILTER COCK CONTROL
 PASH TO LOCK CONTROL
 HOLD SECTS TO UNKOCK

 HIGH
 DEMAND ENERGY
 MENU

 VACATION
 OR AWAY

 COLD AIR
- **High Demand mode** Operates very similar to Hybrid mode, but lets the system know in advance that it will be experiencing a larger water demand than usual.
- **Standard mode** Shuts off the heat pump and only uses the electric elements to heat the water, just like a standard electric water heater. Standard mode allows for operation in extremely cold situations (less than 45°F)
- Vacation setting –System drops the temperature set point to 50°F to save energy, while also preventing the water from freezing. The unit resets it when the customer returns home.

New Heat Pump Water Heaters Rheem Heat Pump Water Heater

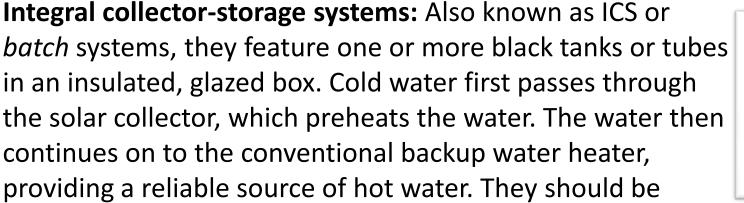
- Has an Energy Factor of 2.0
- Has a storage capacity of 50 gallons and meets the qualifications for an ENERGY STAR listing.
- Has 2.5-inch-thick, non-CFC foam insulation to minimize heat loss during standby periods when there is no demand for hot water;
- A premium resistored anode rod extends tank life;
- Long-lasting stainless steel resistored elements;
- Factory-installed brass drain valve;
- Factory-installed temperature and pressure relief valve;
- Hot and cold-water and condensate drain connections
 (all ¾-inch N.P.T.) on the side of the water heater, rather than on
 the top, for easier installation and maintenance.

Three Settings are Available

- Mode 1 Energy Saver 'Heat pump only' mode, which works by extracting warmth from the surrounding air, concentrating the heat and delivering it to the water.
- Mode 2 Normal When the peak hot water demands are very high, using the combination 'heat pump/electric elements' mode is the best choice. In the dual mode, it still can achieve an energy factor (EF) of 1.5
- Mode 3 Electric Heat Only A temporary 'electric heat only' setting is available to ensure hot water availability without operating the heat pump. The HP-50 will revert back to its previous setting (Energy Saver or Normal) after two weeks, if not reset by the user.

Pros and Cons for Heat Pump Water Heaters

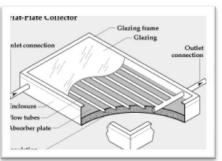
Pros

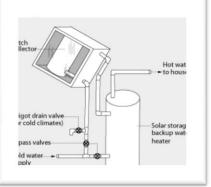

- Available with built-in water tanks
- Performs better in warm climates; may do even better
- Becoming more common
- Able to be part of a DR program
- Uses electricity to move heat from one place to another instead of generating heat directly.
- Uses about one-half as much electricity as a conventional electric resistance water heater.
- Lower operating costs that can offset higher purchase and installation prices
- Qualifies for state and federal tax credits

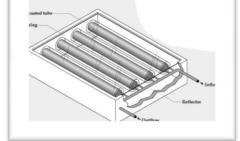
Cons

- Require installation in locations that remain in the 40°-90° F (4.4°-32.2°C) range year-round and provide at least 1,000 cubic feet (28.3 cubic meters) of air space around water heater
- Cool exhaust air can be exhausted to the room or outdoors; install in a space with excess heat (i.e., furnace room)
- Will not operate efficiently in a cold space.
- May have higher initial costs compared to conventional storage water heaters.

Types of Solar Collectors

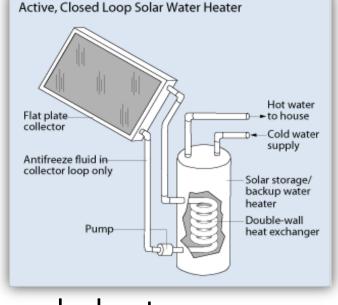

Flat-plate collector: Glazed flat-plate collectors are insulated, weatherproofed boxes that contain a dark absorber plate under one or more glass or plastic covers.




installed only in mild-freeze climates because the outdoor pipes could

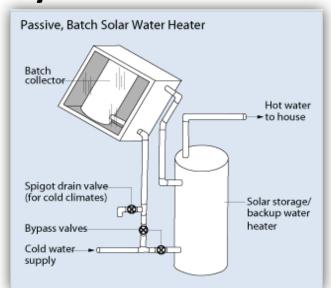
freeze in severe, cold weather.

Evacuated-tube solar collectors: Feature parallel rows of transparent glass tubes. Each tube contains a glass outer tube and metal absorber tube attached to a fin. The fin's coating absorbs solar energy but inhibits radiative heat loss.



Active Solar Water Heating Systems

- Direct circulation systems:
 Pumps circulate household water through the collectors and into the home. They work well in climates where it rarely freezes.
- Pumps circulate a non-freezing,
 heat-transfer fluid through the collectors and a heat
 exchanger. This heats the water that
 then flows into the home. They are popular in climates
 prone to freezing temperatures



Passive Solar Water Heating Systems

- Less expensive than active systems
- Less efficient, last longer than active systems
- Integral collector-storage passive systems:
 - Work best in areas where temperatures rarely fall below freezing. They also work well in households with significant daytime and evening hot-water needs.

Thermosyphon systems:

 Water flows through the system when warm water rises as cooler water sinks. The collector must be installed below the storage tank so that warm water will rise into the tank; there is a concern regarding proper installation due to the weight of the water tanks.

Johnson

Pros and Cons for Solar Water Heaters

Pros

- Environmentally-friendly
- Low maintenance
- Can recover cost quickly; short payback
- Can work in almost any climate
- Rebates at state and federal levels available to reduce costs up to 30% of investment
- Utility incentives available

Cons

- Higher up-front initial cost when compared to conventional system
- Does not support a direct combination with radiators (including baseboard ones).
 - Efficiency of solar powered systems depends on sunlight resources. In colder climates, where heating or electricity needs are higher, efficiency/capacity is lower.

Source: www.house-energy.com/Solar/Pros-Cons-Solar.htm

Water Heater Operating Costs Comparison

Water Heater type	Efficiency Factor (EF)	Installed Cost	Annual Energy Cost	Life Expectancy	Total Cost
Conventional gas storage	0.6	\$850	\$350	13	\$5,394
High-efficiency gas storage	0.65	\$1,025	\$323	13	\$5,220
Condensing gas storage	0.86	\$2,000	\$244	13	\$5,170
Conventional oil-fired storage	0.55	\$1,400	\$654	8	\$11,299
Minimum Efficiency electric storage	0.9	\$750	\$463	13	\$6,769
High-efficiency electric storage	0.95	\$820	\$439	13	\$6,528
Demand gas (no pilot) ⁴	0.8	\$1,600	\$262	20	\$5,008
Electric heat pump water heater	2.2	\$1,660	\$190	13	\$4,125
Solar with electric back-up	1.2	\$4,800	\$175	20	\$7,072

^{1.} Purchase costs include our best estimates of installation labor and do not include financial incentives.

Source: ACEEE Consumer Guide to Home Energy Savings: Condensed Online Version *Water Heating* Sept. 2007 www.aceee.org/Consumerguide/waterheating.htm#lcc

^{2.} Operating cost based on hot water needs for typical family of four and energy costs of 9.5¢/kWh for electricity, \$1.40/therm for gas, \$2.40/gallon for oil.

^{3.} Future operating costs are neither discounted nor adjusted for inflation.

^{4.} Estimates for tankless gas water heaters are based on the federal EF rating method, which may over-estimate the efficiency of tankless water heaters in houses.

New DOE Rules for Water Heaters

Direct Heating Equipmen	<u></u>	
Residential Water Heate	≀2,¥	
Product Class		Standard Level
Gas-fired Storage	For tanks with a Rated Storage Volume at or below 55 gallons: EF = 0.675 - (0.0015 x Rated Storage Volume in gallons)	For tanks with a Rated Storage Volume above 55 gallons: EF = 0.8012 - (0.00078 x Rated Storage Volume in gallons)
Electric Storage	For tanks with a Rated Storage Volume at or below 55 gallons: EF = 0.960 - (0.0003 x Rated Storage Volume in gallons)	For tanks with a Rated Storage Volume above 55 gallons: EF = 2.057 - (0.00113 x Rated Storage Volume in gallons)
Oil-fired Storage	EF = 0.68 - (0.0019 x Rated Storage Volume in gallons)	
Gas-fired Instantaneous	EF = 0.82 - (0.0019 x Rated Storage Volume in gallons)	1
EF is the "energy factor," an	id the "Rated Storage Volume" equals the water storage capacity of a water	
eater (in gallons), as specified	d by the manufacturer.	
,	nits per hour," and AFUE is "Annual Fuel Utilization Efficiency."	

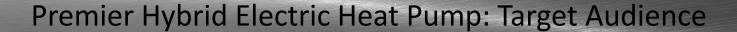
HIGH EFFICIENCY INTEGRATED HEAT PUMP

- Hybrid electric design: Integrates heat pump technology
 - Conserves energy; less than half the cost to operate compared to standard electric model
- 2.3 EF: Standard electric units are
 .93 to .95 EF

- The only type of electric water heater that is ENERGY STAR® qualified
- 80 gallon capacity
 - Extra capacity to store "cheap" hot water created from the heat pump technology

- Similar footprint to conventional electric models
 - Simple installation
- Advanced Control: Three modes of operation
 - High Efficiency, Hybrid and Electric modes
 offer the right efficiency setting based on climate
 demand and installation
- Tax credit eligible

- Through 2010, this model is eligible for a Federal Tax Credit of up to \$1,500 (30% of total installation cost)
- May also be eligible for state and local utility company incentives

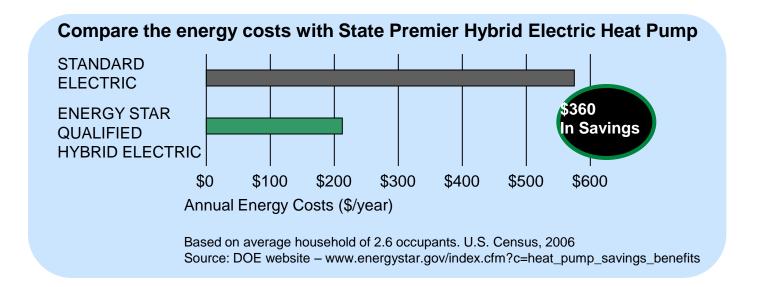


The Premier Hybrid Electric Heat Pump is an integrated system that utilizes heat pump technology to pull heat from the surrounding air and deposit the heat into the tank.

In "efficiency" mode, the water heater operates in the following manner:

- 1 A fan brings air through the top air filter
- 2 Heat in the air is absorbed by the refrigerant inside the evaporator coil
- The refrigerant is pumped through a compressor, which raises the temperature
- 4 Hot refrigerant is circulated through the copper coil and transfers heat to the water

 The Premier Hybrid Electric Heat Pump Water Heater can be effectively used in all areas of the U.S. Based


on the location, either or both of the heating components will operate for optimal performance.

 Our water heater is designed for the customer who is looking for significant efficiency improvements and the latest in electric water heating. These customers will be interested in new and eco-friendly technology.

Premier Hybrid Electric Heat Pump: Saving Money

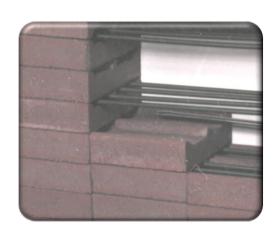
Premier Hybrid Electric Heat Pump: Payback

Payback Scenario	
MSRP	\$1,995
Federal Tax Credit (30%)	-\$599
SEEARP (State ENERGY STAR Rebate)	-\$200
Utility Rebate	-\$100
Standard 50 gallon electric cost	-\$300
Upgrade cost delta	\$797
Annual cost of operation savings	\$360
Payback	2.2 yrs
Total product life savings	\$4,320

Assumptions:

State funding remains for ENERGY STAR products Utility rebates are available Product lifespan of 12 years

HIGH EFFICIENCY INTEGRATED HEAT PUMP



Electric Thermal Storage (ETS) Space and Water Heating

"Proven Long-Life Electric Storage"

What is Electric Thermal Storage (ETS)?

Storage of Off-Peak or Renewable electricity in the form of heat for Space and Water Heating

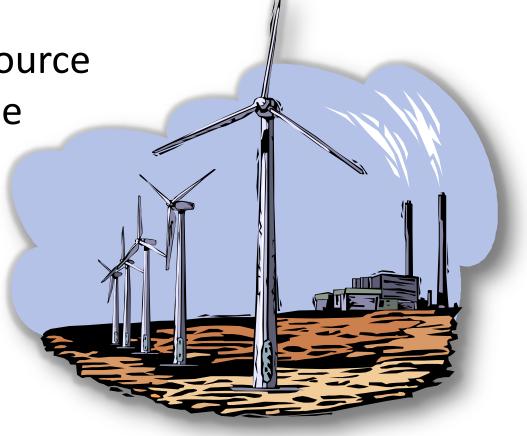
Family of ETS Products

Residential:

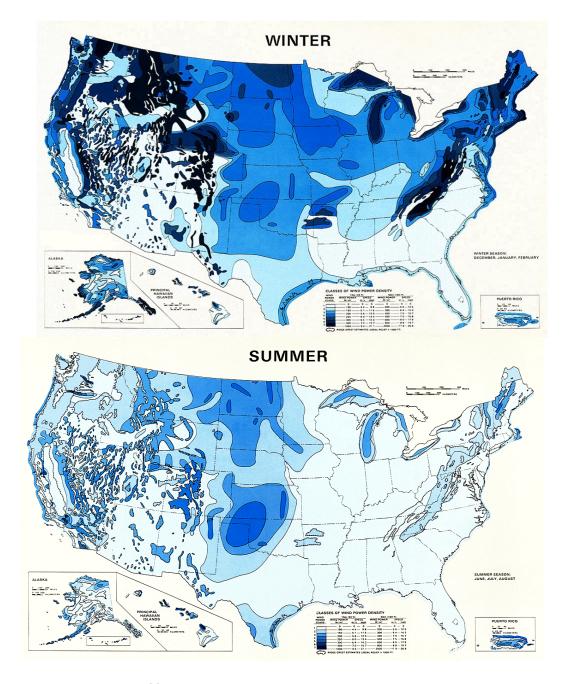
- Room Heaters, Furnaces, Hydronic
 - Up to 240kWh Storage
- Interactive Water Heater Controls
 - 100 Gallon Water Heater stores 26kWh

Commercial & Industrial:

- Furnaces and Hydronics
 - Up to 960kWh Storage

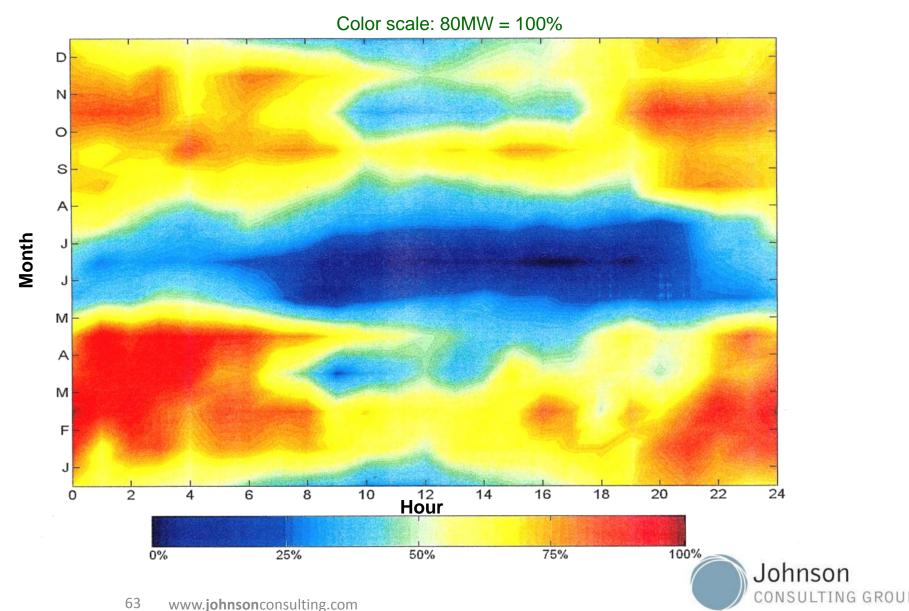


Wind Energy

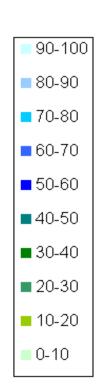

The Most Viable
 Renewable Energy Source

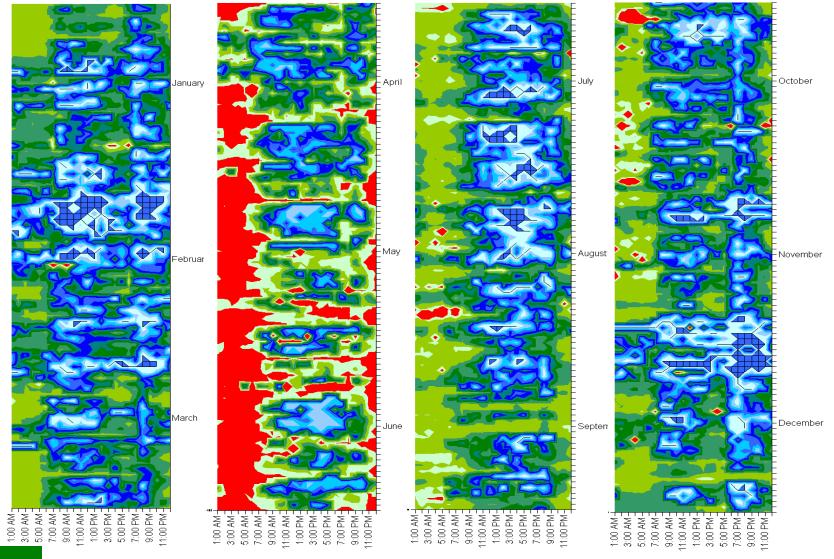
Generation is variable

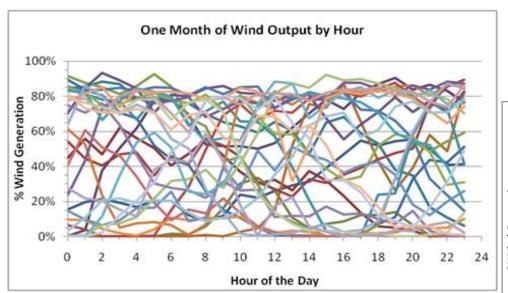
and unpredictable

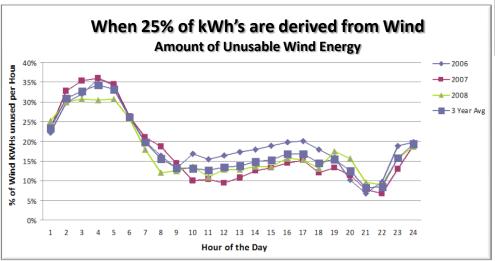


NREL Seasonal Average Wind Resource Maps

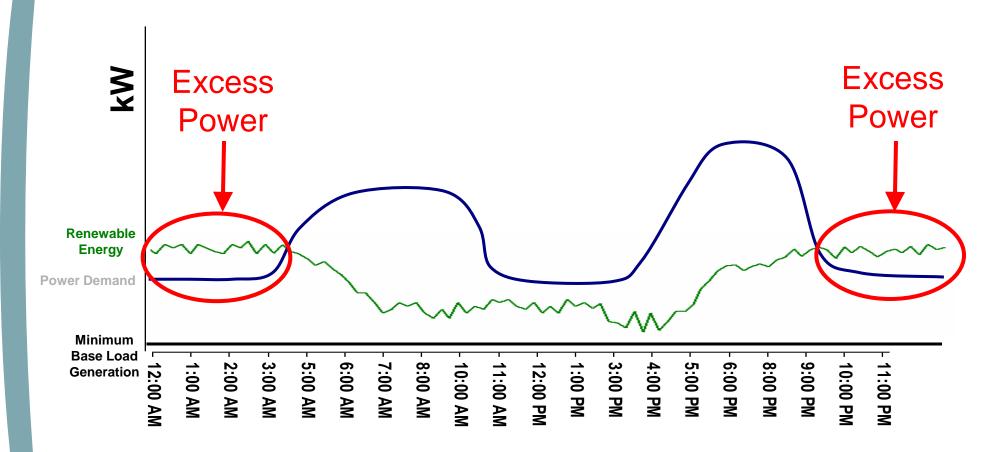


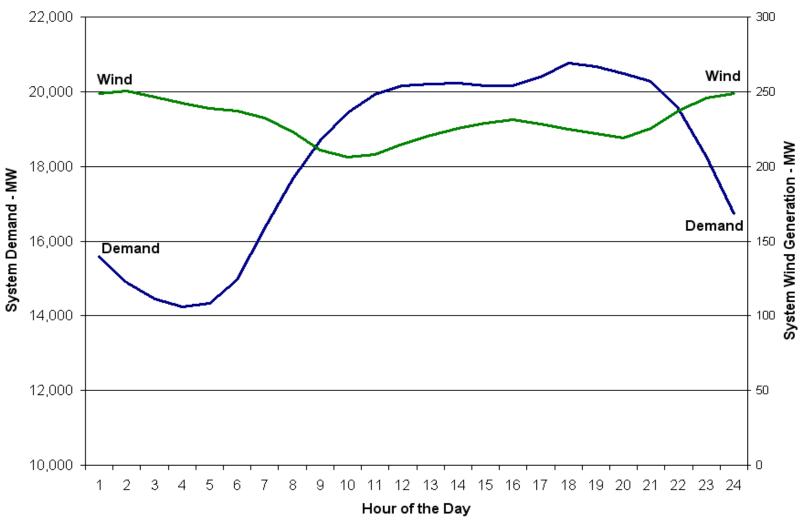

Typical Wind Farm Output Pattern


Real Time Prices-Buffalo Ridge Wind Farm


MISO NSP.Buffr Gennode LMP 2007

Variability of Renewables

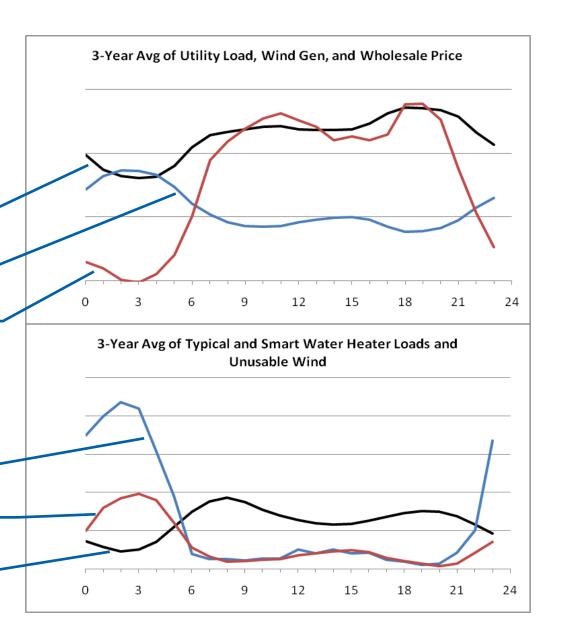

Stable Annual Output


Power Generation with Renewables vs. Demand

Renewable Integration Value

NYISO 2008 Data

Overall Utility Load


Wind Generation

Wholesale Energy Cost

Smart Water Heater Load

Unusable Wind Generation

Typical Water Heater Load

ETS... a "Thermal Battery"

Can quickly respond to changes to changes in power availability, thereby fully utilizing generation from renewable energy sources

Interactive Space & Water Heater Control

- Adjusts the target temperature for up or down regulation
- Adjusts the input wattage
- Provides Comfort Assurance

System Components

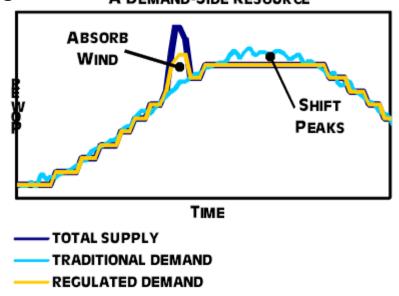
- Consists of 3 main components:
 - main control module
 - temperature sensor
 - water temperature regulator (mixing valve)
- No modification of the existing water heater is needed to install. The temperature sensor and mixing valve insert into the hot water outlet of the water heater and the control module mounts nearby. A small amount of plumbing and wiring is required.

Interactive Water Heater Control

Think of a 100 gallon Water Heater as a 26 kWh Battery (nominal two day supply of hot water)

Interactive Water Heater Control

- It connects to load control signals to store or shed electric load as an up- and down-regulation tool.
- It is ready to connect to Smart Grid signals of the future; continuously reporting its storage and shedding capabilities and responding to the very precise up- or down-regulation needs of the grid.
- This will help maximize renewable and off-peak electric resources while providing uninterrupted hot water for the consumer.


Up and Down Regulation

Each water heater can absorb 4.5 kW of power during excess production periods

A DEMAND-SIDE RESOURCE

such as surges in wind and solar power production.

- This same water heater can also reduce load by approximately 1 kW if desired.
- As with all Steffes heating products, you gain capacity to shift customers' loads to off-peak demand periods.

Operating Modes to Regulate Demand

STD. CHARGE

PEAK (NO CHARGING)

ECONOMY

- Alternative Energy (A) Helps capitalize on periods of excess energy production by heating to maximum capacity. Where better to store excess renewable/off- peak energy ENERGY than at the point of use?
- **Standard Charge (C)** The Steffes interactive water heater control will charge to nominal water heater capacity.
- **Economy (E)** Helps you reduce overall demand while maintaining your customers' comfort. The upper "bonnet" is allowed to heat to target temperature to make hot water available to your customers.
- **Peak (P)** Helps reduce excess demand. When power is at a premium, you can divert it to those customers with great need and reduce the overall costs for those customers that don't have an immediate need.
- Variable Control Options Several additional options available that provide variable control

Low-Cost Electric Storage Grid-interactive Renewable Space and Water Heating

Tachualasu	Cost			
Technology	\$/kW·h	\$/kW		
Electric Thermal Storage†	\$30 - \$60	\$100 - \$200		
CAES (above-ground)	\$200 - \$250	\$700 - \$800		
ZnBr Flow Cell	\$280 - \$450	\$425 - \$1300		
Pb-Acid Battery	\$330 - \$480	\$420 - \$660		
NaS Battery	\$350 - \$400	\$450 - \$550		
Flywheel	\$1340 - \$1570	\$3360 - \$3920		

Source: EPRI 2009 energy stroage technology cost estimates

†Source: Steffes Corp., Inc.

Comparison – Cost, Energy & Carbon

This analysis uses three (3) years of actual load, wind scaled to 25% of load, LMP, and EPRI water heater data.

Energy Storage Method	Wholesale Cost (\$/y)	Total Energy Used (kW·h/y)	Wind Energy Use (kW·h/y)	Nonwind Energy Use (kW·h/y)	CO ₂ Reduction† (lb/y)
55-gal Uncontrolled Storage Water Heater	\$251	4805	1156	3649	Baseline
			24%	76%	

New Dimension of Conservation and Efficiency, charging more when there is renewable energy available and storing more energy to span times without renewable energy

85-gal Grid-Interactive Storage Water Heater	\$133	4940	2726	2214	1436
			55%	45%	
105-gal Grid-Interactive Storage Water Heater	\$126	4974	2840	2134	1515
with Smart Signal		/	57%	43%	

Assumes that COP = 2 above 55°F and COP = 1 at or below 55°F

55-gal Heat Pump Water Heater (Zone 1)	\$126	2407	580	1828	1821
			24%	76%	
55-gal Heat Pump Water Heater (Zone 3)	\$153	2936	717	2219	1430
			24%	76%	
55-gal Heat Pump Water Heater (Zone 5)	\$187	3566	880	2686	964
			25%	75%	
55-gal Heat Pump Water Heater (Zone 7)	\$205	3899	972	2928	721
			25%	75%	

†Assumes 1 lb of CO₂ per kW·h of nonwind energy use.

Renewable Integration and Arbitrage Value

Smart-Grid, Distributive Energy and Load Shaping Tool

Provides precision load control for:

- Energy arbitrage
- Following variable renewable generation
- Ancillary Services
 - Frequency Control
 - Operating Reserves
 - Up/Down Regulation
- Energy Independence & Conservation

Grid-interactive Renewable Water Heating Systems are good for...

- Environment
- Consumers
- Utilities
- Conservation
- Efficiency
- The Grid

"If we want to have a zero carbon economy, we must encourage products or technologies that have the potential of getting us there."

Questions?

Demand-Side Management Technology Workshop: Advances in Water Heating

Sponsored by
Basin Electric Power Cooperative
with Western Area Power Administration

May 26, 2010 Bismarck, ND

